PNEUMATIC ACTUATORS

DOUBLE ACTING/SPRING RETURN

PNEUMATIC ACTUATORS
Working Condition

Temperature: from 0º to + 80ºC; from -20ºC to +80ºC with dry air only. (from -40ºC to +150ºC in special execution)
Air supply: Minimum 40 psi; Maximum 130 psi
Operating media: Compressed filtered air, not necessarily lubricated. In case of lubricated air, either non detergent oil or NBR compatible oil, must be used.

Double Acting Operation

*CCW
Air is supplied to Port A forcing the pistons away from each other (towards ends), rotating the drive pinion counter-clockwise and exhausting air out of Port B

*CW
Air is supplied to Port B forcing the pistons toward each other (towards center), rotating the drive pinion clockwise and exhausting air out of Port A

Spring Return Operation

*CCW
Air is supplied to Port A forcing the pistons away from each other (towards ends), rotating the drive pinion counter-clockwise, compressing the springs and exhausting air out of Port B

*FAIL CW
Air failure (loss of pressure) allows the compressed springs to force the pistons toward each other (towards center), rotating the drive pinion clockwise and exhausting air out of Port A
PNEUMATIC ACTUATORS

MATERIALS OF CONSTRUCTION

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Qty.</th>
<th>Standards Material</th>
<th>No.</th>
<th>Description</th>
<th>Qty.</th>
<th>Standards Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indicator Screw</td>
<td>1</td>
<td>WCB</td>
<td>15</td>
<td>Piston O-Ring</td>
<td>2</td>
<td>Viton/NBR</td>
</tr>
<tr>
<td>2</td>
<td>Indicator</td>
<td>1</td>
<td>Plastic</td>
<td>16</td>
<td>Piston Bearing</td>
<td>2</td>
<td>Engineering Plastics</td>
</tr>
<tr>
<td>3</td>
<td>Snap Ring</td>
<td>1</td>
<td>Stainless Steel</td>
<td>17</td>
<td>Guide Piston</td>
<td>2</td>
<td>Nylon 66</td>
</tr>
<tr>
<td>4</td>
<td>Washer</td>
<td>1</td>
<td>Stainless Steel</td>
<td>18</td>
<td>Spring</td>
<td>*</td>
<td>Spring Steel</td>
</tr>
<tr>
<td>5</td>
<td>Outside Washer</td>
<td>1</td>
<td>Engineering Plastics</td>
<td>19</td>
<td>Spring Retainer(L)</td>
<td>*</td>
<td>Nylon 66</td>
</tr>
<tr>
<td>6</td>
<td>Body</td>
<td>1</td>
<td>Aluminum Alloy</td>
<td>20</td>
<td>Spring Retainer®</td>
<td>*</td>
<td>Nylon 66</td>
</tr>
<tr>
<td>7</td>
<td>O-Ring Top</td>
<td>1</td>
<td>Viton/NBR</td>
<td>21</td>
<td>Retainer Connector</td>
<td>*</td>
<td>Brass</td>
</tr>
<tr>
<td>8</td>
<td>Bearing Top</td>
<td>1</td>
<td>Engineering Plastics</td>
<td>22</td>
<td>End O-Cap Ring</td>
<td>2</td>
<td>Viton/NBR</td>
</tr>
<tr>
<td>9</td>
<td>Inside Washer</td>
<td>1</td>
<td>Engineering Plastics</td>
<td>23</td>
<td>End O-Cap</td>
<td>2</td>
<td>Aluminum Alloy</td>
</tr>
<tr>
<td>10</td>
<td>Pinion</td>
<td>1</td>
<td>Alloy Steel</td>
<td>24</td>
<td>End Cap Stop Screw</td>
<td>8</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>11</td>
<td>Bearing Bottom</td>
<td>1</td>
<td>Engineering Plastics</td>
<td>25</td>
<td>Adjust Screw</td>
<td>2</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>12</td>
<td>O-Ring Bottom</td>
<td>1</td>
<td>Viton/NBR</td>
<td>26</td>
<td>Adjust Screw Nut</td>
<td>2</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>13</td>
<td>Plug</td>
<td>2</td>
<td>NBR</td>
<td>27</td>
<td>Adjust Screw Washer</td>
<td>2</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>14</td>
<td>Piston</td>
<td>2</td>
<td>Cast Alluminum Steel</td>
<td>28</td>
<td>Adjust Screw O-Ring</td>
<td>2</td>
<td>Viton/NBR</td>
</tr>
</tbody>
</table>
B SERIES DIMENSIONAL DATA

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>Z</th>
<th>AIR CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>1.89</td>
<td>2.28</td>
<td>2.56</td>
<td>3.74</td>
<td>0.47</td>
<td>0.55</td>
<td>1.42</td>
<td>1.97</td>
<td>0.43</td>
<td>5.75</td>
<td>0.39</td>
<td>3.15</td>
<td>M6X10</td>
<td>0.55</td>
<td>G 1/8"</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>1.97</td>
<td>2.32</td>
<td>2.91</td>
<td>4.09</td>
<td>0.47</td>
<td>0.55</td>
<td>1.42</td>
<td>1.97</td>
<td>0.43</td>
<td>5.75</td>
<td>0.39</td>
<td>3.15</td>
<td>M6X10</td>
<td>0.55</td>
<td>G 1/8"</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>2.36</td>
<td>2.83</td>
<td>3.46</td>
<td>4.65</td>
<td>0.47</td>
<td>0.71</td>
<td>1.97</td>
<td>2.76</td>
<td>0.55</td>
<td>6.61</td>
<td>0.39</td>
<td>3.15</td>
<td>M8X13</td>
<td>0.71</td>
<td>G 1/8"</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>2.56</td>
<td>3.27</td>
<td>3.94</td>
<td>5.12</td>
<td>0.47</td>
<td>0.71</td>
<td>1.97</td>
<td>2.76</td>
<td>0.55</td>
<td>7.24</td>
<td>0.39</td>
<td>3.15</td>
<td>M8X13</td>
<td>0.71</td>
<td>G 1/8"</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>2.64</td>
<td>3.54</td>
<td>4.29</td>
<td>5.47</td>
<td>0.55</td>
<td>0.71</td>
<td>1.97</td>
<td>2.76</td>
<td>0.67</td>
<td>8.03</td>
<td>0.39</td>
<td>3.15</td>
<td>M8X13</td>
<td>0.83</td>
<td>G 1/8"</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>2.99</td>
<td>4.09</td>
<td>4.72</td>
<td>5.91</td>
<td>0.71</td>
<td>0.98</td>
<td>1.97</td>
<td>2.76</td>
<td>0.67</td>
<td>10.6</td>
<td>0.55</td>
<td>3.15</td>
<td>M8X13</td>
<td>0.83</td>
<td>G 1/8"</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>3.54</td>
<td>4.53</td>
<td>5.24</td>
<td>6.42</td>
<td>0.79</td>
<td>0.98</td>
<td>2.76</td>
<td>4.02</td>
<td>0.87</td>
<td>10.4</td>
<td>0.55</td>
<td>3.15</td>
<td>M10X16</td>
<td>1.02</td>
<td>G 1/8"</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>4.09</td>
<td>5.51</td>
<td>6.10</td>
<td>7.28</td>
<td>1.00</td>
<td>1.57</td>
<td>2.76</td>
<td>4.02</td>
<td>0.87</td>
<td>11.7</td>
<td>0.79</td>
<td>5.12</td>
<td>M10X16</td>
<td>1.02</td>
<td>NAMUR G 1/4"</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>4.21</td>
<td>5.98</td>
<td>6.75</td>
<td>7.93</td>
<td>1.00</td>
<td>1.57</td>
<td>4.02</td>
<td>4.92</td>
<td>1.06</td>
<td>15.3</td>
<td>0.79</td>
<td>5.12</td>
<td>M12X20</td>
<td>1.22</td>
<td>NAMUR G 1/4"</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>5.04</td>
<td>6.92</td>
<td>7.76</td>
<td>8.94</td>
<td>1.42</td>
<td>1.57</td>
<td>4.02</td>
<td>4.92</td>
<td>1.06</td>
<td>18.0</td>
<td>1.10</td>
<td>5.12</td>
<td>M12X20</td>
<td>1.22</td>
<td>NAMUR G 1/4"</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>5.31</td>
<td>8.11</td>
<td>9.06</td>
<td>10.24</td>
<td>1.77</td>
<td>2.36</td>
<td>5.51</td>
<td>1.42</td>
<td>20.6</td>
<td>1.26</td>
<td>5.12</td>
<td>M16X25</td>
<td>1.97</td>
<td>NAMUR G 1/4"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>5.31</td>
<td>8.90</td>
<td>10.04</td>
<td>11.22</td>
<td>1.77</td>
<td>2.36</td>
<td>5.51</td>
<td>1.42</td>
<td>20.9</td>
<td>1.26</td>
<td>5.12</td>
<td>M16X25</td>
<td>1.97</td>
<td>NAMUR G 1/4"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>6.10</td>
<td>10.08</td>
<td>11.42</td>
<td>12.60</td>
<td>1.77</td>
<td>2.36</td>
<td>6.50</td>
<td>1.81</td>
<td>23.7</td>
<td>1.26</td>
<td>5.12</td>
<td>M20X25</td>
<td>2.36</td>
<td>NAMUR G 1/4"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>7.48</td>
<td>11.57</td>
<td>12.60</td>
<td>13.78</td>
<td>1.77</td>
<td>2.36</td>
<td>6.50</td>
<td>1.81</td>
<td>28.4</td>
<td>1.26</td>
<td>5.12</td>
<td>M20X25</td>
<td>2.36</td>
<td>NAMUR G 1/2"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>7.72</td>
<td>12.76</td>
<td>13.70</td>
<td>14.88</td>
<td>1.77</td>
<td>2.36</td>
<td>6.50</td>
<td>1.81</td>
<td>29.2</td>
<td>1.26</td>
<td>5.12</td>
<td>M20X25</td>
<td>2.36</td>
<td>NAMUR G 1/2"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>8.66</td>
<td>14.96</td>
<td>15.83</td>
<td>17.01</td>
<td>1.77</td>
<td>2.36</td>
<td>6.50</td>
<td>1.81</td>
<td>33.8</td>
<td>1.26</td>
<td>5.12</td>
<td>M20X25</td>
<td>2.36</td>
<td>NAMUR G 1/2"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACTUATOR OUTPUT TORQUE CHARTS

AIR CONSUMPTION (cubic in.)

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Opening</th>
<th>Closing</th>
<th>Model Number</th>
<th>Opening</th>
<th>Closing</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA-32</td>
<td>2.4</td>
<td>2.4</td>
<td>DA-160</td>
<td>223</td>
<td>307</td>
</tr>
<tr>
<td>DA-45</td>
<td>4.9</td>
<td>6.7</td>
<td>DA-190</td>
<td>360</td>
<td>482</td>
</tr>
<tr>
<td>DA-52</td>
<td>6.7</td>
<td>8.5</td>
<td>DA-210</td>
<td>452</td>
<td>591</td>
</tr>
<tr>
<td>DA-63</td>
<td>12.2</td>
<td>14</td>
<td>DA-240</td>
<td>652</td>
<td>873</td>
</tr>
<tr>
<td>DA-75</td>
<td>18</td>
<td>23</td>
<td>DA-270</td>
<td>1031</td>
<td>1373</td>
</tr>
<tr>
<td>DA-83</td>
<td>25</td>
<td>34</td>
<td>DA-300</td>
<td>1452</td>
<td>1812</td>
</tr>
<tr>
<td>DA-92</td>
<td>38</td>
<td>56</td>
<td>DA-350</td>
<td>2142</td>
<td>2825</td>
</tr>
<tr>
<td>DA-105</td>
<td>57</td>
<td>72</td>
<td>DA-400</td>
<td>3030</td>
<td>2196</td>
</tr>
<tr>
<td>DA-125</td>
<td>90</td>
<td>113</td>
<td>DA-500</td>
<td>8092</td>
<td>6713</td>
</tr>
<tr>
<td>DA-140</td>
<td>148</td>
<td>195</td>
<td>DA-600</td>
<td>15408</td>
<td>12815</td>
</tr>
</tbody>
</table>

WEIGHT TABLE (lbs)

<table>
<thead>
<tr>
<th>Model Number</th>
<th>DA</th>
<th>SR</th>
<th>Model Number</th>
<th>DA</th>
<th>SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1.7</td>
<td>N/A</td>
<td>160</td>
<td>44.2</td>
<td>52.4</td>
</tr>
<tr>
<td>45</td>
<td>2.3</td>
<td>2.5</td>
<td>190</td>
<td>83.8</td>
<td>98.6</td>
</tr>
<tr>
<td>52</td>
<td>2.4</td>
<td>2.7</td>
<td>210</td>
<td>99.2</td>
<td>118</td>
</tr>
<tr>
<td>63</td>
<td>4</td>
<td>4.3</td>
<td>240</td>
<td>139</td>
<td>169</td>
</tr>
<tr>
<td>75</td>
<td>4.8</td>
<td>5.3</td>
<td>270</td>
<td>206</td>
<td>253</td>
</tr>
<tr>
<td>83</td>
<td>6.3</td>
<td>6.9</td>
<td>300</td>
<td>242</td>
<td>286</td>
</tr>
<tr>
<td>92</td>
<td>9.5</td>
<td>11.1</td>
<td>350</td>
<td>410</td>
<td>516</td>
</tr>
<tr>
<td>105</td>
<td>13.5</td>
<td>15.3</td>
<td>400</td>
<td>636</td>
<td>793</td>
</tr>
<tr>
<td>125</td>
<td>19.4</td>
<td>20.4</td>
<td>500</td>
<td>2160</td>
<td>2447</td>
</tr>
<tr>
<td>140</td>
<td>26.7</td>
<td>33.7</td>
<td>600</td>
<td>4354</td>
<td>4695</td>
</tr>
</tbody>
</table>

DOUBLE ACTUATING ACTUATOR OUTPUT TORQUE in/lb

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Input Air Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44</td>
</tr>
<tr>
<td>DA-32</td>
<td>40</td>
</tr>
<tr>
<td>DA-45</td>
<td>80</td>
</tr>
<tr>
<td>DA-52</td>
<td>106</td>
</tr>
<tr>
<td>DA-63</td>
<td>189</td>
</tr>
<tr>
<td>DA-75</td>
<td>266</td>
</tr>
<tr>
<td>DA-83</td>
<td>404</td>
</tr>
<tr>
<td>DA-92</td>
<td>603</td>
</tr>
<tr>
<td>DA-105</td>
<td>869</td>
</tr>
<tr>
<td>DA-125</td>
<td>1354</td>
</tr>
<tr>
<td>DA-140</td>
<td>2319</td>
</tr>
<tr>
<td>DA-160</td>
<td>3540</td>
</tr>
<tr>
<td>DA-190</td>
<td>5416</td>
</tr>
<tr>
<td>DA-210</td>
<td>6611</td>
</tr>
<tr>
<td>DA-240</td>
<td>9717</td>
</tr>
<tr>
<td>DA-270</td>
<td>14762</td>
</tr>
<tr>
<td>DA-300</td>
<td>16868</td>
</tr>
<tr>
<td>DA-350</td>
<td>30320</td>
</tr>
<tr>
<td>DA-400</td>
<td>43206</td>
</tr>
<tr>
<td>DA-500</td>
<td>112545</td>
</tr>
<tr>
<td>DA-600</td>
<td>216073</td>
</tr>
</tbody>
</table>

Note: The above actuator output torque data has factored in the loss due to friction and passing of the force. The actual output torque of the actuator will be no less than the above data.
<table>
<thead>
<tr>
<th>Model</th>
<th>Springs Per Piston</th>
<th>Input Air Pressure (psi)</th>
<th>Actuator Output Torque (in/lb)</th>
<th>Spring Output Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>58</td>
<td>73</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Start 0</td>
<td>End 90</td>
<td>Start 0</td>
</tr>
<tr>
<td>SR-45</td>
<td>3</td>
<td>70</td>
<td>52</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>58</td>
<td>34</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>45</td>
<td>15</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>60</td>
<td>24</td>
<td>87</td>
</tr>
<tr>
<td>SR-52</td>
<td>3</td>
<td>95</td>
<td>73</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>79</td>
<td>50</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>63</td>
<td>27</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>148</td>
<td>129</td>
<td>171</td>
</tr>
<tr>
<td>SR-63</td>
<td>4</td>
<td>328</td>
<td>95</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>312</td>
<td>47</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>248</td>
<td>66</td>
<td>210</td>
</tr>
<tr>
<td>SR-75</td>
<td>3</td>
<td>358</td>
<td>73</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>297</td>
<td>191</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>237</td>
<td>104</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>312</td>
<td>47</td>
<td>175</td>
</tr>
<tr>
<td>SR-83</td>
<td>4</td>
<td>358</td>
<td>73</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>297</td>
<td>191</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>237</td>
<td>104</td>
<td>372</td>
</tr>
<tr>
<td>SR-92</td>
<td>4</td>
<td>358</td>
<td>73</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>297</td>
<td>191</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>237</td>
<td>104</td>
<td>372</td>
</tr>
<tr>
<td>SR-105</td>
<td>4</td>
<td>358</td>
<td>73</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>297</td>
<td>191</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>237</td>
<td>104</td>
<td>372</td>
</tr>
<tr>
<td>SR-125</td>
<td>4</td>
<td>358</td>
<td>73</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>297</td>
<td>191</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>237</td>
<td>104</td>
<td>372</td>
</tr>
<tr>
<td>SR-140</td>
<td>4</td>
<td>358</td>
<td>73</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>297</td>
<td>191</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>237</td>
<td>104</td>
<td>372</td>
</tr>
<tr>
<td>SR-160</td>
<td>4</td>
<td>358</td>
<td>73</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>297</td>
<td>191</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>237</td>
<td>104</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>285</td>
<td>130</td>
<td>403</td>
</tr>
</tbody>
</table>

1 - “Spring Output Torque” is under “Lost Air” condition & “Actuator Output Torque” is under spring force condition

2 - Normally Open Valve: Actuator at 0 degrees, valve is closed; actuator at 90 degrees, valve is open.

3 - Normally Closed Valve: Actuator at 0 degrees, valve is open; actuator at 90 degrees, valve is closed.

Note: The above actuator output torque data has factored in the loss due to friction and passing of the force. The actual output torque of the actuator will be no less than the above data.
<table>
<thead>
<tr>
<th>Model</th>
<th>Springs Per Piston</th>
<th>Input Air Pressure (psi) Actuator Output Torque (in/lb)</th>
<th>Spring Output Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start 0</td>
<td>End 90</td>
<td>Start 0</td>
</tr>
<tr>
<td>SR-190</td>
<td>3</td>
<td>4991</td>
<td>3770</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4248</td>
<td>2620</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3496</td>
<td>1460</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4558</td>
<td>2115</td>
</tr>
<tr>
<td>SR-210</td>
<td>3</td>
<td>5761</td>
<td>4416</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4744</td>
<td>2947</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3717</td>
<td>1478</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4903</td>
<td>2221</td>
</tr>
<tr>
<td>SR-240</td>
<td>3</td>
<td>8523</td>
<td>6974</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7045</td>
<td>4974</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5567</td>
<td>2974</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7328</td>
<td>4221</td>
</tr>
<tr>
<td>SR-270</td>
<td>3</td>
<td>13434</td>
<td>10894</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>11355</td>
<td>7965</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9266</td>
<td>5036</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>12107</td>
<td>7027</td>
</tr>
<tr>
<td>SR-300</td>
<td>3</td>
<td>14718</td>
<td>11992</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>12125</td>
<td>8487</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9523</td>
<td>4991</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>12540</td>
<td>7069</td>
</tr>
<tr>
<td>SR-350</td>
<td>3</td>
<td>26594</td>
<td>20320</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>21983</td>
<td>13620</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>17364</td>
<td>6921</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>22851</td>
<td>10310</td>
</tr>
<tr>
<td>SR-400</td>
<td>3</td>
<td>38312</td>
<td>31497</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>31878</td>
<td>22789</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>25444</td>
<td>14080</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>33409</td>
<td>19780</td>
</tr>
<tr>
<td>SR-500</td>
<td>3</td>
<td>106864</td>
<td>79739</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>92465</td>
<td>56295</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>78057</td>
<td>32851</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>101173</td>
<td>46932</td>
</tr>
<tr>
<td>SR-600</td>
<td>2</td>
<td>216276</td>
<td>163203</td>
</tr>
</tbody>
</table>

1. “Spring Output Torque” is under “Lost Air” condition & “Actuator Output Torque” is under spring force condition.
2. Normally Open Valve: Actuator at 0 degrees, valve is closed; actuator at 90 degrees, valve is open.
3. Normally Closed Valve: Actuator at 0 degrees, valve is open; actuator at 90 degrees, valve is closed.

Note: The above actuator output torque data has factored in the loss due to friction and passing of the force. The actual output torque of the actuator will be no less than the above data.